

 ARL-TR-7363 ● AUG 2015

 US Army Research Laboratory

Data Analysis Tools for Visualization Study

by Richard L Astrom

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official
endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

 ARL-TR-7363 ● AUG 2015

 US Army Research Laboratory

Data Analysis Tools for Visualization Study

by Richard L Astrom
Computational and Information Sciences Directorate, ARL

Approved for public release; distribution is unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid
OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

Aug 2015
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

October 1, 2014 – December 31, 2014
4. TITLE AND SUBTITLE

Data Analysis Tools for Visualization Study
5a. CONTRACT NUMBER

W911QX-07-F-0023
5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Richard L Astrom
5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

ICFI, Cybersecurity & Systems Division
7125 Thomas Edison Drive, Suite 100
Columbia, MD 21046

8. PERFORMING ORGANIZATION REPORT NUMBER

ARL-TR-7363

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

US Army Research Laboratory
ATTN: RDRL-CIN-D
2800 Powder Mill Road
Adelphi, MD 20783-1138

10. SPONSOR/MONITOR'S ACRONYM(S)

ARL
11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

A study in fiscal year (FY) 2014 led by Dr Robert Erbacher, described in Evaluation of the Presentation of Network Data via
Visualization Tools for Network Analysts, resulted in a large body of data from trial results. This report presents tools that I
have developed to codify, display, and analyze the data. In the current visualization study, test subjects looked at a set of
network intrusion alerts and decided which of those alerts represented true threats. The correct answers and the selections by
each subject were recorded as fixed-format text files. My tools parse this text, insert the data into tables in a relational
database, and create views to facilitate reading selected data from the tables. Additional tables were built, which contained
sums of the performance statistics for each trial. I wrote Python programs to analyze the summary data and applied statistical
tests to some of the means to determine whether they were statistically different. A plot capability was added as well.

15. SUBJECT TERMS

Visualization, alerts, network analysis, true positives, false positives, true negatives, false negatives

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

60

19a. NAME OF RESPONSIBLE PERSON

Richard L Astrom
a. REPORT

Unclassified
b. ABSTRACT

Unclassified
c. THIS PAGE

Unclassified
19b. TELEPHONE NUMBER (Include area code)

301-394-3181
 Standard Form 298 (Rev. 8/98)
 Prescribed by ANSI Std. Z39.18

iii

Contents

List of Figures v

List of Tables v

1. Introduction 1

2. Methods 1

2.1 Test Subjects 1

2.2 Alerts Presented 1

2.3 Three Display Types 2

2.4 Inputs from Test Subjects 3

3. Subject Trial Results 4

3.1 Selection Text Files 4

3.2 Creation of Table subject_choices 4

4. Summaries of Trial Data 5

4.1 True Answers 5

4.2 SQL Join Between Subject Choices and True Answers 6

4.3 Statistics for Each Trial 6

4.4 Results Summary Table 6

5. Correlations and Plots 7

5.1 Mean t Tests 7

5.2 Mean F Tests 8

5.3 Scatter Plot Example 8

6. Future Analysis 10

7. References and Notes 11

Appendix A. SQL Table Generation 13

iv

Appendix B. Python Programs 25

Appendix C. Results Summary Listing 45

List of Symbols, Abbreviations, and Acronym 51

Distribution List 52

v

List of Figures

Fig. 1 Node-link: The user is asked here to determine regions of the
visualization that imply intrusions and intrusion attempts by clicking
near a particular link or node (from Etoty et al.1)2

Fig. 2 Table: The user is asked here to determine which alert messages in the
table imply intrusions and intrusion attempts by clicking the
checkboxes in the Suspicious column (from Etoty et al.1)3

Fig. 3 PC: The user is asked here to determine which alert messages in the
table imply intrusions and intrusion attempts by clicking on suspicious
links (from Etoty et al.1)...3

Fig. 4 ARL: F1 score for the first, second, and third trial9

Fig. 5 MSU: F1 score for the first, second, and third trial9

List of Tables

Table A-1 Truth table - scores...19

Table A-2 SQL Table means_compare ...22

vi

INTENTIONALLY LEFT BLANK.

1

1. Introduction

A visualization study in fiscal year (FY) 2014, led by Dr Robert Erbacher,1 resulted
in a large body of data from trial results. To process the results, I have developed
tools to codify, display, and analyze the data.

In the visualization study, test subjects looked at a set of network intrusion alerts
and decided which of those alerts represented true threats. The set of test alerts was
presented to 51 test subjects, each of whom tried the same task with 3 different
display types presented to them. This procedure resulted in 145 separate tests,
because some of the test subjects did not complete all 3 tasks. The test subject’s
objectives were to 1) identify and mark all of the alerts that were true threats and 2)
avoid marking any that were not. The correct answers and the selections by each
subject were recorded as fixed-format text files.

My tools parse the text files and insert the data into tables in a structured query
language (SQL) relational database. I used PostgreSQL as the SQL application,
called from Python programs running on a Linux Red Hat operating system. I
created views to facilitate reading selected data from the tables, as well as built
additional tables, which contained sums of the performance statistics for each trial.

Next I wrote Python programs to analyze the summary data, and applied statistical
tests to some of the means to determine whether they were statistically different. A
plot capability was added as well.

This report describes all of these tools and the development process used to create
them.

2. Methods

2.1 Test Subjects

The 51 test subjects came from 2 distinct groups. The first group consisted of US
Army Research Laboratory (ARL) network analysts who were experienced at doing
this task. The second group consisted of students at Morgan State University (MSU)
who had no experience. These 2 groups are identified in the SQL tables by their
organization as ARL or MSU.

2.2 Alerts Presented

The subjects were presented with 140 alerts, 42 of which represented real threats.
A perfect score by a subject constituted selection of all 42 threats, with no additional

2

alerts selected. A senior network analyst designed the inputs, which were designed
so they would be accurate and representative of the problem.

2.3 Three Display Types

The subjects did the same task using 3 different display formats: node-link, table,
and parallel coordinate (PC). Figures 1, 2, and 3 illustrate the 3 types of displays
(which are reproduced with permission from Etoty et al.1).

Fig. 1 Node-link: The user is asked here to determine regions of the visualization that imply
intrusions and intrusion attempts by clicking near a particular link or node (from Etoty et
al.1)

3

Fig. 2 Table: The user is asked here to determine which alert messages in the table imply
intrusions and intrusion attempts by clicking the checkboxes in the Suspicious column (from
Etoty et al.1)

Fig. 3 PC: The user is asked here to determine which alert messages in the table imply
intrusions and intrusion attempts by clicking on suspicious links (from Etoty et al.1)

2.4 Inputs from Test Subjects

Each subject, on each of the 3 display types, was asked to select which alerts they
thought were true threats and provide comments, which could be typed within the
line. Their comments were sorted by group for multiple alerts that the subject
thought were related to each other. The results of each trial were recorded in a text
file.

4

Overall, 145 text files, showing each subject’s selections for each trial, are included
this study. The report describes the SQL database I built, which contains all of the
information and how analysis structures and programs were built to analyze the
data. There are sections describing the following:

• SQL table design and creation

• Parsing of the results text files

• Creation of views into the SQL tables, showing summaries of the data

• Correlations and data plots of the summary data

• Future plans, including additional correlations and plots

• SQL table generation details (Appendix A)

• Listings of all the Python programs (Appendix B)

• Listing of the results summary for the 145 trials (Appendix C)

3. Subject Trial Results

3.1 Selection Text Files

For each subject and each display type, there is a text file showing the subject’s
selections of suspicious alerts. A sample text file is shown at the beginning of
Appendix A. These were parsed by a Python program, process_main.py, which is
described in Appendix A and listed in Appendix B.

3.2 Creation of Table subject_choices

The parsing output was inserted into the SQL table subject_choices.2 This table has
1 row for every subject/display/selection. For example, if Subject 16, using the
node-link display, selects 42 of the 140 alerts presented, then that adds 42 lines to
subject_choices.

Each row of subject_choices contains the following:

• The subject’s organization

• Subject identification (ID)

• Display type

• Start time

5

• Alert number selected

• Alert group for this selection

• Alert group comment

• Order of this display type for this subject

The subjects averaged approximately 50 selections for each trial, with a total of
7,227 subject selections. This is the number of rows in the table subject_choices.

The detailed description of this process is in Appendix A. The Python programs are
listed in Appendix B.

4. Summaries of Trial Data

With this large number of trial selections by each subject, a summary for each
subject/display combination was needed. A very simple SQL query gives the
number selected in each trial. However, what is really needed is a sum of all
decisions, separated into 4 categories:

• True positive (TP), those that were correctly selected: GOAL = 42

• True negative (TN), those that were correctly NOT selected: GOAL = 98

• False positive (FP), those that were selected in error: GOAL = 0

• False negative (FN), those that were not selected but should have been
selected: GOAL = 0

The sum of all 4 of these categories will always be 140, the number of alerts
presented in the trials. The sum of TP and FN will always be 42, the number of
actual threats among the 140 total alerts. The sum of TN and FP will always be 98,
the number of non-threat alerts.

4.1 True Answers

To sort the subjects’ decisions into these 4 categories, it was necessary to have the
right answers in a SQL table. That table, true_alerts, was built with 140 rows, 1 for
each alert, along with the correct answer for that alert. I also constructed a view
called true_threats in true_alerts, showing only the threats. Example listings of
these tables are shown in Appendix A.

One more piece of information about the true threats was provided—whether the
test set designer considered them easy, moderate, or hard to identify. So, for each

6

alert identified as a threat, there are 3 extra columns, identifying each threat as easy,
moderate, or hard. There are 5 easy, 5 moderate, and 32 hard alerts.

4.2 SQL Join Between Subject Choices and True Answers

With the tables subject_choices and true_alerts in place, a Python program
prepared a SQL JOIN between these 2 tables, correlating each selection with its
true answer and filling in the fields TP, FP, TN, and FN. These were then summed
to create one SQL table row for each subject/display, for 145 rows. These were
inserted into the results table results_summary_plus.

4.3 Statistics for Each Trial

Three more statistics were calculated for each trial:

1) Recall is the percentage of real threats that were correctly identified.
o Recall = TP/(TP + FN)

2) Precision is the percentage of selections actually representing real threats
(also called the false alarm rate [FAR]).
o Precision = TP/(TP + FP)

3) The F1 score represents a geometric average of Recall and Precision.
o F1 = 2*TP/(2*TP + FP + FN)

All of these scores have a maximum of 1, which is the best score. For the
subdivision of the true alerts into easy, moderate, and hard, the sample sizes were
too small for Precision and F1 to be meaningful; therefore, only the Recall score
was calculated for the 3 subcategories. Recall shows the percentage of true alerts
in each subcategory that were correctly selected.

4.4 Results Summary Table

With all of these fields to calculate, I created a summary table with the basic data
first and then a second final table based on the first. This explains the name of the
resulting SQL table, results_summary_plus. The Python programs and SQL
commands used to create this table are in Appendix A, and the actual Python
listings are in Appendix B.

The results_summary_plus table, with 145 rows, has the following fields:

• Basic Trial information: org, subject, display, time_order, completion_time

• Overall Scores: tp, fp, tn, fn, recall, precision, f1_score

7

• Subcategory Scores: tp_easy, fn_easy, recall_easy, tp_mod, fn_ mod,
recall_ mod, tp_hard, fn_ hard, recall_ hard

A SQL View was also created into results_summary_plus, called seven_scores.
This View shows summaries useful for analysis. It reduces the display to the
following columns: org, subject, display, completion_time, tp, fp, tn, fn, recall,
precision, f1_score.

This summary is listed for all 145 trials in Appendix C.

5. Correlations and Plots

Comparisons of different groups of trial results are easily done using SQL queries
on the table results_summary_plus. Python programs were written to apply both t
tests and F tests to the means of groups of data. They use the Python statistical
package scipy.stats.3 The student’s t test compares the means of 2 distributions. The
F test compares multiple means, 2 or more.

The Python statistical library was installed, and both t tests and F tests were used
and tested. The Python plotting package supplied by MATLAB, matplotlib, was
also installed and used.

5.1 Mean t Tests

The student’s t test compares 2 means from different distributions.4 The outcome
of a t test is a determination if the 2 means are statistically different. For a first
demonstration of t tests, 10 scores from each of the 3 display types were tested, for
a total of 30 tests. They were tested to see whether the performance was statistically
different between the ARL and MSU subjects.5

For the purpose of documenting the first set of mean comparisons, I designed a
SQL table to hold the results. The function compare_means_t, called by the Python
main program means_test_main.py, inserts results into the table as it calculates
them. This table, means_compare, is listed in Appendix A. It has 30 different score
comparisons.

As an example, looking at the F1 score, the ARL analysts were better at 95%
confidence using the table display, which is expected because that is similar to the
display they use every day. However, using the other 2 displays, they are not better
to a 95% confidence level.

8

5.2 Mean F Tests

The F test compares multiple means from different distributions, any number 2 or
more.6 The outcome of an F test is a determination of whether any of the means are
statistically different from the others. It does not tell you which one or ones. A
Python method, compare_means_f, was written to perform this test.

An example from the trial data was run, comparing the F1 scores for each subject’s
first, second, and third trial. (The display order was random, so each subject’s order
of displays is different, with 6 different combinations.) The Python log is shown in
Appendix A.

Neither the ARL group nor the MSU group showed significant change for the
second and third times through the trial. These datasets are used again in the next
example, in a scatter plot.

5.3 Scatter Plot Example

One plot has been created, as an example of the plot capability available for future
analysis: a scatter plot of all F1 scores for the first, second, and third trial for each
subject. The means and their 95% confidence intervals are superimposed on the
scatter chart, along with a trend-line plot. Neither the ARL group nor the MSU
group showed an improvement for the second and third times through the trial.

Figures 4 and 5 show the 2 plots. There are many more types of plots, and different
types will be used in future analysis.

9

Fig. 4 ARL: F1 score for the first, second, and third trial

Fig. 5 MSU: F1 score for the first, second, and third trial

10

6. Future Analysis

The visualization study included an extensive survey given to each of the 51 trial
subjects, including demographic information, experience (if any) in analysis of
alerts, and computer/display preferences. There are many comparisons and
correlations proposed to analyze the relationship between subject performance and
survey answers. More correlations and display plots are required based upon the
performance in the trials. These plots will be added to the ones already done.

The following is a partial list of proposed future correlations, from the Network
Science Division (NSD) project report, August 2014:7

• Overall performance versus experience

• Performance on event significance versus experience

• Visual preference versus performance

• Experience versus visual preference

• Performance versus age

• Visual preference versus age

• Area knowledge versus performance

• Operating system (OS), protocols, security, intrusion detection system
(IDS)/intrusion prevention system (IPS), communication skills

• Area knowledge versus visual preference

• Correlation of performance against difficulty of alerts

This is not a complete list, and more analysis will be performed as needed.

11

7. References and Notes

1. Etoty RE, Erbacher RF, Garneau C. Evaluation of the Presentation of network
data via visualization tools for network analysts. Adelphi (MD): Army
Research Laboratory (US); March 2014. Report No.: ARL-TR-6865.

2. Names of Python programs and SQL tables, views, and columns are shown in
italics. SQL names, by convention, are always in lowercase.

3. Scipy.org. Statistics package for Python [accessed 2014 Dec 15].
http://docs.scipy.org/doc/scipy-0.14.0/reference/tutorial/stats.html.

4. t-based confidence interval for the mean. Kalamazoo (MI): Western Michigan
University; 2003 Sep 8 [accessed 2014 Dec 15].
http://www.stat.wmich.edu/s216/book/node79.html.

5. All of the examples here have been calculated using a confidence interval of
95%. This is a parameter that can be easily changed.

6. Wikipedia. F test [accessed 2014 Dec 15]. http://en.wikipedia.org/wiki/F-test.

7. Erbacher RF. Cognitive Foundations of Cyber Analysis, Division project
report, August 2014

12

Bibliography

Elementary statistical calculations and simulations. Ann Arbor (MI): University of
Michigan, ARC/CSCAR Python Workshop; 2013 Jun 10–14 [accessed 2014
Dec 15]. http://dept.stat.lsa.umich.edu/~kshedden/Python-Workshop/stats_
calculations.html.

Etoty RE, Erbacher RF. A survey of visualization tools assessed for anomaly-based
intrusion detection analysis. Adelphi (MD): Army Research Laboratory (US);
April 2014. Report No.: ARL-TR-6891.

Etoty R. Network Data via visualization tools for network analysts [master’s
thesis]. Baltimore, MD: Morgan State University; November 2013.

13

Appendix A. SQL Table Generation

14

A-1 Creation of Table subject_choices

A-1.1 Input Text Files

The source of all the result data is the set of 145 text files, showing the alert
selections for each subject using each display. The following is the text file for 1
example, Subject no. 16 from Morgan State University (MSU) on the node-link
display type.

Id16-nodelink.txt:
{"1":[14,52,65,77,95,97,133,135,126,"The line is darker."],"2":[99,130,58,"Other
countries trying to connect directly with the
US."],"3":[57,94,105,107,109,131,30,41,47,68,72,124,"Too many
communications."],"4":[5,35,19,28,34,76,89,"Contains trojan
virus."],"5":[40,82,125,1,21,37,92,110,117,120,134,"They are suspicious
commands."]}
Time: start: 04:51:42 PM, end: 04:57:29 PM
Submitted: 04:53:03 PM; 04:54:16 PM; 04:55:40 PM; 04:56:43 PM; 04:57:18 PM;

Subject 16 has grouped the selections into 5 groups, “1” through “5” and has
selected 42 alerts—the individual alert numbers, starting with 14,52,… For each
group, Subject 16 has also written a comment (this was optional for the subjects—
many are blank).

There were approximately 5 to 6 files in which changes were needed, due to
something that did not match the format or was necessary to help out the parser.
This included removal of quote signs (replaced by '), removal of a spurious blank
line, etc. In each case, a local copy of the data was changed, not the original, and a
text note describing the changes has been filed with the local copy.

A-1.2 Python Parsing Program process_main.py

I wrote a Python parsing program to parse this text, picking out all alerts and
associating each alert with its group and comment. The parser also read the start
time, for use in later determining the order of the 3 displays for this subject. This
program, process_main.py, is listed in Appendix B-1. Parsing utility routines used
by process_main.py are in the file named process.py in Appendix B-2.

The process_main.py file traverses the data base of subject selections, processing
all 145 trials. One row in the structured query language (SQL) results table
subject_choices is inserted for each alert selection in each trial, an average of 50
selections per trial. (The example text file used for Subject 16 contained 42
selections.)

15

A.1.3 Python Program to Determine Order

As part of the trial design, the order in which display types were used was different
for different subjects. A second Python program, set_order_main.py, performs a
SQL query to pick out the 3 start times for each subject, sorts them, and then inserts
“1”, “2’, or “3” into the field time_order in each row of the table subject_choices.
This program is listed in Appendix B-3.

A-1.4 Format of Table subject_choices

After insertion of all the subject choices into the table and the insertion of the
display order for each subject, the table is complete.

The table subject_choices looks like the following (first few lines):
select * from subject_choices;
 choices_id | subject_org | subject | display | start_time | alert_no | a_group | group_comment |
time_order
------------+-------------+---------+----------+------------+----------+---------+-------------------------+-

 98332 | MSU | 16 | nodelink | 16:51:42 | 135 | 1 | The line is darker. |
3
 98333 | MSU | 16 | nodelink | 16:51:42 | 126 | 1 | The line is darker. |
3
 98334 | MSU | 16 | nodelink | 16:51:42 | 99 | 2 | Other countries . . . |
3
 98335 | MSU | 16 | nodelink | 16:51:42 | 130 | 2 | Other countries . . . |
3
 98336 | MSU | 16 | nodelink | 16:51:42 | 58 | 2 | Other countries . . . |
3
 98337 | MSU | 16 | nodelink | 16:51:42 | 57 | 3 | Too many communications.|
3
 98338 | MSU | 16 | nodelink | 16:51:42 | 94 | 3 | Too many communications.|
3
 98339 | MSU | 16 | nodelink | 16:51:42 | 105 | 3 | Too many communications.|
3
 . . . (7,227 rows)

The columns of the table are as follows:

• subject_org, subject, display, start_time, alert_no, a_group,
group_comment, time_order

o Choices_id is a meaningless primary key number for SQL purposes.

o subject_org is US Army Research Laboratory (ARL) or MSU.

o subject is the number identifying one test subject.

o display is parallel coordination (PC), table, or node-link.

o start_time is the starting time.

o alert_no is the ID number of the alert, from 1 to 140.

o a_group is the group title (usually “1,” “2,” etc.) assigned by the subject.

o group_comment is the subject’s comment about the group.

o time_order is the order in which this subject used this display—first,
second, or third.

16

A-2 Creation of Table results_summary_plus

A-2.1 Need for a Results Summary

For each subject and each display, the results summary was needed to show how
many alerts the subject chose correctly (true positive [TP]), how many were chosen
incorrectly (false positive [FP]), how many real threats were not chosen (false
negative [FN]), and how many nonthreats were not chosen (true negative [TN]).
Higher TPs and TNs represent better performance. For each trial, these sums
constitute the basic information needed for further research and analysis of the
trials. All of the further work in this report and future reports will have the
performance summations as a basis.

A-2.2 Correct Answers: true_alerts Table and true_threats View

To correctly identify each of these values for a particular selection or lack thereof,
the correct answers were needed in a table. These correct answers were already
available in an Excel spreadsheet and were imported into a SQL table. The table
true_alerts shows the correct answer for all 140 alerts. If the alert is not threatening,
all fields are blank. If the field is a threat, the field true_alert is set to 1. In addition,
the true threats were designated as easy, moderate, or hard to find. For a true threat,
one of these three fields is also filled in with a 1. The following are the first few
lines of true_alerts:

SELECT * FROM true_alerts LIMIT 12;
 alert_id | true_alert | moderate | hard | easy
----------+------------+----------+------+------
 1 | | | |
 2 | | | |
 3 | | | |
 4 | | | |
 5 | | | |
 6 | | | |
 7 | 1 | | | 1
 8 | | | |
 9 | | | |
 10 | 1 | | 1 |
 11 | | | |
 12 | | | |
 . . . (140 rows)

A view into this table was also designed, to show only the true threats but not all
alerts. That view specification and its first few lines are as follows:

17

CREATE VIEW true_threats AS SELECT * FROM true_alerts WHERE
true_alert = 1;
SELECT * FROM true_threats LIMIT 7;
 alert_id | true_alert | moderate | hard | easy
----------+------------+----------+------+------
 7 | 1 | | | 1
 10 | 1 | | 1 |
 13 | 1 | | 1 |
 14 | 1 | | 1 |
 16 | 1 | | 1 |
 19 | 1 | 1 | |
 21 | 1 | | 1 |
 . . . (42 rows)

A-2.3 Intermediate Table results_summary using JOIN

Two tables, true_alerts and subject_choices, contain the information necessary to
determine the category of each selection or lack of selection by a subject in a trial.
For each trial, we want to decide, for each alert ID from 1 to 140, whether it is a
TP, FP, TN, or FN. After this decision is made for all 140 alerts, we need a sum of
all 4 of these categories for future analysis.

The table results_summary contains the following fields: org, subject, display,
time_order, true_alerts, selected, tp, fp, tn, fn, f1_score, easy, tp_easy, fn_easy,
mod, tp_mod, fn_mod, hard, tp_hard, and fn_hard.

To determine which category each selection falls into, the SQL tables
subject_choices and true_alerts must be combined using a JOIN command. This
JOIN is performed by the Python program create_summary_main.py. For each
trial, a SELECT statement picks all of the selections for the trial out of the table
subject_choices, creating a temporary view called dispnnn, in which disp is the
display type and nnn is the subject ID. (The names dispnnn and dispnnnv are the
actual names used. After each trial, these temporary views are dropped, and then
the names are reused for the next trial.)

"SELECT DISTINCT ON (subject,display) subject,
display, subject_org, time_order from subject_choices
ORDER BY subject" # Gets all trials
"CREATE OR REPLACE TEMPORARY VIEW dispnnn AS (SELECT
subject_org,subject,time_order,alert_no,a_group,group_
comment FROM subject_choices WHERE subject = subject
AND display = display"1

1SQL statements are shown here without the Python mechanisms to insert variables and without extra

complexity such as SQL functions COALESCE or ROUND. This process is used to make this section more
readable. The actual Python code, with full SQL statement development, is in Appendix B.

18

Then, a second temporary view named dispnnnv is created by a SQL JOIN
command, with a row for each of the 140 alerts. (To help understand this statement,
notice that at the end, the table true_alerts is shortened to t and view dispnnn is
shortened to v.) This view creation uses a JOIN, which matches rows that have the
same alert ID—see the ON clause at the end. The use of “LEFT OUTER JOIN”
creates a view that has a row for every row of true_alerts, which means that it has
1 row per alert ID, whether it is a true threat or not.

"CREATE OR REPLACE TEMPORARY VIEW dispnnnv AS SELECT
t.alert_id, v.subject_org AS org, v.subject,
v.time_order,
 t.true_alert AS true_alert,

 COALESCE((v.alert_no/v.alert_no),0) AS
selected,
 # 1 if present, 0 if not present in
dispnnn

 t.true_alert*selected AS tp,
 GREATEST(selected-t.true_alert,0) AS fp,
 -GREATEST(t.true_alert,selected,0))+1 AS tn,
 GREATEST(t.true_alert-selected,0) AS fn,
 t.easy AS easy,

 t.easy*selected AS tp_easy,
 GREATEST(t.easy-selected,0) AS fn_easy,
 t.moderate AS mod,
 t.moderate*selected AS tp_mod,
 GREATEST(t.moderate-selected,0) AS fn_mod,
 t.hard,0 AS hard,
 t.hard*selected AS tp_hard,
 GREATEST(t.hard-selected,0) AS fn_hard

 FROM true_alerts t LEFT OUTER JOIN dispnnn v
 ON (t.alert_id = v.alert_no)

 ORDER BY alert_id;”

The calculations used to create the scores of TP, FP, TN, and FN were designed to
get the correct answer to each score based upon the following truth table
(Table A-1). The calculations are complex because values of 0 and 1 were needed
in order to obtain their sum; values of True and False would have made it harder to
get the sums.

19

Table A-1 Truth table - scores

True_Alert Selected TP FP TN FN
0 0 0 0 1 0
0 1 0 1 0 0
1 0 0 0 0 1
1 1 1 0 0 0

After creating the temporary view dispnnnv, which has the scores for every alert ID
for 1 trial, the summations of the scores are inserted into the table results_summary
by the following SQL insertion (also invoked in the Python program
create_summary_main.py).

"INSERT INTO results_summary
 (org , subject , display , time_order ,
 true_alerts , selected ,
 tp , fp , tn , fn ,
 f1_score ,
 easy , tp_easy , fn_easy ,
 mod , tp_mod , fn_mod ,
 hard , tp_hard , fn_hard)

 VALUES (
 org, subject, display, time_order,
 (SELECT SUM(true_alert) from dispnnnv),
 (SELECT SUM(selected) from dispnnnv),
 (SELECT SUM(tp) from dispnnnv),
 (SELECT SUM(fp) from dispnnnv),
 (SELECT SUM(tn) from dispnnnv),
 (SELECT SUM(fn) from dispnnnv),
 (SELECT
2*(SUM(tp))/(2*(SUM(tp))+SUM(fp)+SUM(fn)) from
dispnnnv),
 (SELECT SUM(easy) from dispnnnv),
 (SELECT SUM(tp_easy) from dispnnnv),
 (SELECT SUM(fn_easy) from dispnnnv),
 (SELECT SUM(mod) from dispnnnv),
 (SELECT SUM(tp_mod) from dispnnnv),
 (SELECT SUM(fn_mod) from dispnnnv),
 (SELECT SUM(hard) from dispnnnv),
 (SELECT SUM(tp_hard) from dispnnnv),
 (SELECT SUM(fn_hard) from dispnnnv)
);

After this process has been done for all trials, the intermediate table
results_summary is complete.

20

A-2.4 Creation of Table results_summary_plus

The table results_summary_plus contains all of the columns in results_summary
plus these additional columns:

• recall = TP / (TP + FN) = Percent of true
alerts found

• Precision = TP / (TP + FP) = False alarm rate

• recall_easy

• recall_mod

• recall_hard

This table is built by the Python program create_summary_plus.py. Then 1 more
field, elapsed_time, is added by another Python program, add_comp_time_main.py.
The first program, create_summary_plus.py, reads each line of results_summary,
calculates the additional fields from existing fields, and adds each new line to the
new table, results_summary_plus. The second program, add_comp_time_main.py,
traverses the directory structure and finds all of the original text input files, reading
the start, stop, and pause times from them. The time fields are parsed, and the total
elapsed time is calculated and inserted into results_summary_plus. The Python
programs are listed in Appendix B; they include the SQL statements that are built
from the SQL query information and the text parser.

After all construction, table results_summary_plus has 145 rows, 1 for each
subject/display trial. Its columns are as follows:

• org Organization of the subject – ARL or MSU

• subject Subject ID

• display Display type (PC, Nodelink, or Table)

• time_order For this subject, order of this display type – first,
second, or third

• completion_time Elapsed time for this trial, not including pause time

• tp No. of TP selections

• fp No. of FP selections

• tn No. of TN selections

• fn No. of FN selections

21

• Recall TP / (TP + FN)

• Precision TP / (TP + FP)

• f1_score 2*TP / (2*TP + FP + FN)

• tp_easy No. of easy TP selections

• fn_easy No. of easy FN selections

• recall_easy TP_easy / (TP_easy + FN_easy)

• tp_mod No. of moderate TP selections

• fn_ mod No. of moderate FN selections

• recall_ mod TP_ mod / (TP_ mod + FN_ mod)

• tp_hard No. of hard TP selections

• fn_ hard No. of hard FN selections

• recall_ hard TP_ hard / (TP_ hard + FN_ hard)

A SQL View was also created into results_summary_plus, called seven_scores.
This view shows summaries useful for analysis. It reduces the display to the
following columns: org, subject, display, completion_time, tp, fp, tn, fn, recall,
precision, f1_score

These are the working copies of the result scores for all trials. They will be used
extensively in analysis.

A-3 Correlations and Plots

The t tests and F tests have been researched and programmed for use in comparing
the means of different groups of result data. A plot capability has also been installed
and tested. A few examples have been run for demonstration purposes; they are
presented here.

A-3.1 Compare Two Means Using Student’s t Test

The function compare_means_t, developed for this analysis, returns the t value
from the t distribution as a function of the 2 groups’ standard deviations and degrees
of freedom. It also returns the crossover value of t at which one can conclude that
the two means are different, within a particular confidence level.2 The confidence

2Scipy.org. Statistics package for Python [accessed 2014 Dec 15]. http://docs.scipy.org/doc/scipy-

0.14.0/reference/tutorial/stats.html.

22

level desired is an input to the function. The function also combines the t value and
the crossover value to return a Boolean value of whether the 2 means are
statistically different or not—DIFFERENT or NOT DIFFERENT. This function is
in the Python module functions.py, which is listed in Appendix B.

The t test function has been written, for demonstration purposes, to write results
directly into a SQL table, means_compare. Table A-2 is a listing of these results.

Table A-2 SQL Table means_compare

The results for the F1 score are highlighted, because F1 is a balance between Recall
and Precision. The ARL analysts were better at 95% confidence using the table
display, which is expected because that is similar to the display they use every day.
However, using the other 2 displays, they are not better to a 95% level. In addition,
using the node-link display, ARL analysts are better to approximately 90%
confidence—the t value is 1.86 and the threshold for 95% is 2.01.

A-3.2 Compare Multiple Means using F Test

The Python function compare_means_f accepts all of the distributions being
compared, and it outputs the F statistic, the P value on the F distribution, and the F
distribution value threshold for meeting the desired confidence level.2 This function
is in the Python module functions.py, listed in Appendix B.

An example from the trial data has been run, comparing the F1 scores for each
subject’s first, second, and third trial. Following is the output log from the Python
run:
ARL - In compare_means_f - there are 3 datasets, with 67 total samples.
means = [0.55, 0.54, 0.57] - They are NOT different with 95%
confidence.
F = 0.063, F must be > crossover value of 3.14

MSU - In compare_means_f - there are 3 datasets, with 78 total samples.

23

means = [0.46, 0.52, 0.46] - They are NOT different with 95%
confidence.
F = 1.156, F must be > crossover value of 3.119

One type of plot has been done (shown in Figs. 4 and 5 in the main report) as an
example of the plotting capability. There are many more plot types that can be used
in future analyses. The plot prepared is a scatter plot of F1 score, separated by the
trial order for each subject—first, second, or third. The means, the 95% confidence
interval for the means, and a trend line are superimposed on the scatter plot. These
plot were prepared using the Python main program, order_plots.py, which is listed
in Appendix B.

24

INTENTIONALLY LEFT BLANK.

25

Appendix B. Python Programs

26

The Python programs are listed here, in the order in which they were originally
used, which corresponds to the order in which they were described in the body of
this report and in Appendix A.

B-1 process_main.py

The Python program process_main.py parses the text files containing the subject’s
selections, picking out all alerts and associating each alert with its group and
comment. The program also reads the start time and calculates the elapsed time
from the start, stop, and pause times. The program inserts each selection into the
SQL table subject_choices.
'''
Created on Oct 23, 2014

@author: rastrom
'''
import sys
import os
import psycopg2
import sql_connect
import process

if __name__ == '__main__':
 print "Enter process_main - Read survey results into TABLE subject_choices"
 # Set up SQL connection
 conn = sql_connect.connect()
 if conn == -1:
 print "main: connection call failed. Exiting."
 sys.exit(-1)
 cur = conn.cursor()
 total = 0
 # For each results file, get ORG, SUBJECT, and DISPLAY from Dir path and file
name
 # Then read and parse each file (parse_results)
 # Then insert data into SQL (insert_results)
 filebase = "/home/rastrom/w00_cognition/FY15/Data"
 inputdata = os.listdir(filebase)
 for org in ['ARL','MSU']: # ARL analysts or Morgan State students
 dirs = os.listdir(filebase + '/' + org)
 for direct in dirs: # '101' , '112' etc. - represents 'subject' number
 if direct.find('.') == -1:
 subject = int(direct)
 path = filebase + '/' + org + '/' + direct + '/'
 files = os.listdir(path)
 for infile in files:
 count = 0
 if (infile.find('table') >= 0 and infile.find('~') == -1): #
Avoid the editing residue of form name.txt~
 display = 'table'
 struct = process.parse_results(path + infile) # See
process.py comments for dictionary 'struct' layout.
 count = process.insert_results(cur, org, subject, display,
struct)
 if count > 0:
 print 'Inserted ' + str(count) + ' lines from ' +
infile
 elif (infile.find('nodelink') >= 0 and infile.find('~') == -
1):
 display = 'nodelink'
 struct = process.parse_results(path + infile) # See
process.py comments for dictionary 'struct' layout.

27

 count = process.insert_results(cur, org, subject, display,
struct)
 if count > 0:
 print 'Inserted ' + str(count) + ' lines from ' +
infile
 elif (infile.find('pc') >= 0 and infile.find('~') == -1):
 display = 'pc'
 struct = process.parse_results(path + infile) # See
process.py comments for dictionary 'struct' layout.
 count = process.insert_results(cur, org, subject, display,
struct)
 if count > 0:
 print 'Inserted ' + str(count) + ' lines from ' +
infile
 # End if-elif-elif
 total = total + count
 # End for infile
 # End if direct.find
 # End for direct
 # End for org
 conn.close()
 print "Exit read_results_main - total insertions = " + str(total)
end main

End process_main.py

B-2 process.py

process.py contains parsing routines called by process_main.py.
'''
Created on Oct 23, 2014

@author: rastrom

intake - data intake, from results file in .../FY15/Data/ORG/subjectNNN/idNNN-
{nodelink/pc/table}.txt

 where ORG is one of the two organizations of subjects - ARL or MSU
 SUBJECT is the subject ID number
 and {nodelink/pc/table} are the three different display types.

 e.g. ... /FY15/Data/ARL/101/id101-table.txt for ARL subject 101
with the 'table' format type.

File format:

{ alerts chosen } \n Time: start: T end T \n [Paused: T - T] EOF ('Paused'
line is optional)

Shortened example:
--
{"1":["6","vulnerability"],"2":["10","EXTREMELY
OLD"],"3":["13","14","16","19","34","38","43","49","FTP scanning"]}
Time: start: 2:44:58 PM, end: 3:00:08 PM
Paused: 2:45:17 PM - 2:46:10 PM,2:54:35 PM - 2:54:46 PM

OUTPUT - dictionary struct = { "start_time":string, "elapsed_time":minutes,
"alerts":[list of alert groups] }
 where [list] = [{"name":N, "comment":C, "alerts":[N,M,...] } , {...}
, ...]
 with each group of alerts having its own dict with name,
comment, and alerts list.

'''

28

from datetime import datetime, timedelta # Not necessary

def parse_results(infile):
 # Declare return structure with null entries
 struct = {"alerts":[], "start_time":'01:01:01 AM', "elapsed":0}
 timedata = '01:01:01 AM'
 if infile.find('~') >= 0:
 return struct;
 inputdata = open(infile)
 contents = ""
 for line in inputdata:
 contents = contents + line

 lines = contents.split("\r\n") # 0 = alerts, 1 = Time start / stop, 2 = Time
Paused (if present).
 # # There is occasionally a line [3] -
"Submitted: {list of times}". Ignored.
 alerts = lines[0]
 timedata = lines[1].replace("\r","").replace("\n","") # 175-table, 678-table
each have extra "\n" at end.
 pausedata = ""
 if len(lines) > 2:
 pausedata = lines[2]
 time_values = parse_times(timedata, pausedata) # Returns start_time
(datetime.time), elapsed (float - minutes)

 # Initialize result return dictionary
 struct = {"alerts":[], "start_time":time_values[0], "elapsed": time_values[1]}

 # Parse alerts into structure
 # Remove end point brackets
 alert1 = alerts.replace("{","")
 alert2 = alert1.replace("}","")
 # There might be no alerts chosen - alert2 would now be null string
 if alert2 == "":
 print "No alerts in " + infile
 return struct
 # Separate alerts into Groups using " [] "
 groups = alert2.split("],")
 #print "groups = "
 #print groups
 for g in groups:
 components = g.split(":[")
 #print "components ="
 #print components
 gname = components[0] # group name chosen by subject
 groupname = gname.replace('"','') # groupname is text string, typically
'1', '2', etc.
 galerts = components[1].replace("]","")
 #print "group "+groupname+" = " + galerts
 # first split off comment at end
 quotesplit = galerts.split('"') # will make a mess of alert numbers if
they are of form "N","N",...
 n = len(quotesplit)
 #print "len = " + str(n) + " and quotesplit = "
 #print quotesplit
 groupcomment = quotesplit[n-2] # next-to-last one is the comment - the
last one is '' after the last quote.
 #print "comment = '" + groupcomment + "'"
 #print "galerts = '" + galerts + "'"
 replacement = ',"'+groupcomment+'"'
 #index =
 alertsonly = galerts.replace(replacement,'') # Strip off comment at end
 #print "alsertsonly = " + alertsonly

 # Re-split - new alertsplit has only alert numbers (with or without
surrounding quotes)
 alertsplit = alertsonly.split(',')
 #print "alertsplit = "
 #print alertsplit

29

 groupalerts = [] # initialize list of alerts chosen by this subject in
this group
 for alertno in alertsplit:
 try:
 alert = int(alertno.replace('"','')) # Strip "" and cast as
integer (some are "N" and others are just N)
 groupalerts.append(alert)
 except:
 print "### Data casting error. Failed to cast '"\
 + alertno.replace('"','') +"' - Infile " + infile + " - Group
text = " + galerts
 continue

 # end for alertno
 #print groupalerts
 # Build small dict with group name, comment, list
 groupstruct = {"name":groupname, "comment":groupcomment,
"alerts":groupalerts} # One per subject group - name, comment, alert list
 #print groupstruct
 struct["alerts"].append(groupstruct)
 # End for g
 inputdata.close()

 return struct
end parse_results

'''
Method parse_times
Input: Takes the last lines of the input file (after the alerts).
Line[1] is start - end times;
Line[2] (Optional) is Pause times.

Output: returns start time (datetime.time) and total elapsed time (integer -
minutes)
'''
def parse_times(timedata, pausedata):

 # Start & end first - timedata line
 index = timedata.find("Time: start: ")
 partial = timedata[index+13:]
 times = partial.split(",")
 start = times[0] # Format = 'hh:mm:ss PM' - this is accepted into a
SQL Time field.
 ampm = True # Flag: Time value has hh:mm:ss PM (or AM) in it. some do, some
don't.
 amind = start.find("AM")
 pmind = start.find("PM")
 if amind == -1 and pmind == -1:
 ampm = False
 start_dt = datetime.now() # scope issue - define here
 end_dt = datetime.now() # scope issue - define here
 try:
 if ampm:
 start_dt = datetime.strptime("01/01/2001 "+ str(start),"%m/%d/%Y
%I:%M:%S %p")
 else:
 start_dt = datetime.strptime("01/01/2001 "+ str(start),"%m/%d/%Y
%H:%M:%S")
 end_dt = start_dt
 except:
 print "strptime failure - time data = " + timedata
 return start, 0
 endtext = times[1]
 index = endtext.find("end: ")
 endtime = endtext[index+5:]
 try:
 if ampm:
 end_dt = datetime.strptime("01/01/2001 "+ str(endtime),"%m/%d/%Y
%I:%M:%S %p")
 else:

30

 end_dt = datetime.strptime("01/01/2001 "+ str(endtime),"%m/%d/%Y
%H:%M:%S")
 except:
 print "strptime failure - time data = " + timedata
 return start, 0
 if end_dt < start_dt:
 print "Elapsed time < 0 - start time = " + start
 return start, 0
 elapsedtemp = end_dt - start_dt
 #print elapsedtemp
 elapsedsec = elapsedtemp.seconds
 #print start,endtime
 # Now subtract pauses from elapsed time - done in seconds
 if pausedata != "":
 ind = pausedata.find("Paused: ")
 if ind != -1: # There are pauses
 pausetimes = pausedata[ind+8:]
 pauses = pausetimes.split(",")
 for pause in pauses:
 #print pause
 times = pause.split("-")
 start = times[0].strip() # Format = 'hh:mm:ss PM' - this
is accepted into a SQL Time field.
 endtime = times[1].strip()
 try:
 if ampm:
 start_dt = datetime.strptime("01/01/2001 "+
str(start),"%m/%d/%Y %I:%M:%S %p")
 end_dt = datetime.strptime("01/01/2001 "+
str(endtime),"%m/%d/%Y %I:%M:%S %p")
 else:
 start_dt = datetime.strptime("01/01/2001 "+
str(start),"%m/%d/%Y %H:%M:%S")
 end_dt = datetime.strptime("01/01/2001 "+
str(endtime),"%m/%d/%Y %H:%M:%S")
 # End if-else
 except:
 print "strptime failure - pause data = " + pausetimes
 return start,0
 # End try-except
 if end_dt < start_dt:
 print "Pause time < 0 - pause data = " + pausetimes
 return start, 0
 elapsedtemp = end_dt - start_dt
 pausesec = elapsedtemp.seconds
 #print start,endtime,pausesec
 #print "Pause of " + str(pausesec) + " seconds subtracted."
 elapsedsec = elapsedsec - pausesec
 # End for pause
 # End if ind
 # End if pausedata
 elapsed = round(float(elapsedsec)/60.0,2)
 return start, elapsed
End parse_times

'''
Method insert_results
Takes one data file, already parsed into 'struct', and inserts that data into
table 'subject_choices'

struct - layout described above in the header to 'parse_results'

The subject group (ARL or MSU), the subject ID, and the display type (nodelist,
pc, table) are part of the file name or
 directory path, not in the file text that is parsed by parse_results.
 They have to be input to 'insert_results' as calling parameters.
'''

def insert_results(cur,subject_org,subject,display,struct):
 start_time = struct["start_time"]
 '''

31

 # TEST ONLY
 alert_no = 6
 a_group = "1"
 group_comment = "Common ..."
 # END TEST ONLY
 '''

 # Loop through each group of selected alerts, and insert each alert into table
subject_choices.
 count = 0
 dupcount = 0
 errcount = 0
 groups = struct["alerts"]
 for group in groups:
 a_group = group["name"]
 group_comment = group["comment"]
 for alert_no in group["alerts"]:
 # Check if already in
 dupincr = 0
 slct = "select count(*) from subject_choices where (subject = '" +
str(subject) + "' and display = '" + display + "' and alert_no = " + str(alert_no)
+ ");"
 #print slct
 cur.execute(slct)
 rows = cur.fetchall()
 for row in rows:
 if row[0] > 0:
 #print "######################## Duplicate insertion - " +
slct
 dupincr = 1 # Duplication flag

 # End for - done checking for duplication
 if dupincr == 1:
 dupcount = dupcount + 1
 continue # End for this alert no
 group_comment_a = group_comment.replace("'","''") # Escape any ' chars
 ins = "INSERT INTO subject_choices
(subject_org,subject,display,start_time,alert_no,a_group, group_comment) VALUES
('"\
 + subject_org + "','" + str(subject) + "','" + display + "','"\
 + start_time + "','" + str(alert_no) + "'," + a_group + ",'" +
group_comment_a + "');"
 try:
 cur.execute(ins)
 count = count + 1
 except:
 print "################### Error in INSERT - " + str(alert_no) + "
- " + ins
 cur.execute("COMMIT;")
 # End try-except
 # End for alert_no
 # End for group - End of loop through alert groups
 if count > 0:
 cur.execute("COMMIT;")
 if dupcount > 0:
 print "################ " + str(dupcount) + " Duplicate entries attempted
into subject " + str(subject) + ", display type " + display
 return count
end insert_results

End process.py

32

B-3 set_order_main.py

set_order_main.py performs a SQL query to pick out the 3 start times for each
subject, sorts them in order, and then inserts “1”, “2’, or “3” into the field
time_order in each row of the table subject_choices.
'''
Created on Nov 3, 2014

@author: rastrom
'''

import sys
import os
import psycopg2
import sql_connect
import process

if __name__ == '__main__':
 print "Enter set_order_main - For each distinct subject-display-time, set
time_order to 1, 2, or 3."
 # Set up SQL connection
 conn = sql_connect.connect()
 if conn == -1:
 print "main: connection call failed. Exiting."
 sys.exit(-1)
 cur = conn.cursor()
 cur.execute("SELECT DISTINCT subject FROM subject_choices;")
 count = 0
 subjects = cur.fetchall()
 for subject in subjects:
 count = count + 1
 print "Begin subject " + subject[0]
 temptable = "times" + subject[0] # Create temporary table timesNNN
 cur.execute("create temporary table " + temptable + " (start_time
time,display text,time_order SERIAL PRIMARY KEY);")
 cur.execute("COMMIT;")
 cur.execute("insert into " + temptable\
 + " (start_time,display) (select distinct on (start_time,
display) start_time,display from subject_choices where subject = '"\
 + subject[0] +"' order by start_time);") # The serial primary
key, auto-filled-in, provides the ordering 1,2,3.
 cur.execute("COMMIT;")
 cur.execute("select * from " + temptable + ";")
 lines = cur.fetchall()
 for line in lines:
 print line
 cur.execute("update subject_choices c set time_order = (select time_order
from "\
 + temptable +" t where t.display = c.display) where subject =
'" + subject[0] + "';")
 cur.execute("DROP TABLE " + temptable + ";")
 cur.execute("COMMIT;")
 print "End of subjects. Count = " + str(count)
 conn.close()
end main

End set_order_main.py

B-4 create_summary_main.py

This Python program creates a new table row in the table results_summary for each
trial (a trial is 1 subject using 1 display type).

33

'''
Created on Nov 6, 2014

@author: rastrom

Creates the overall summary of the alert sessions with the subjects.

Inputs are:
 1. The table true_alerts,
 which has a row for each of the 140 alerts shown.
 For each alert, it shows true_alert = 1 or 0 (yes or no).
 For each true alert, the table also shows whether the alert was
easy, moderate, or hard to identify.
 2. The table subject_choices,
 which has a row for each alert (140 of them) for each subject, for
each display type (7,227 rows).
 For each subject/display/alert, it shows their answer.

Intermediate temporary views are:

 1. table101 (e.g.) - view of all the rows from subject_choices for one
analyst and one display type.
 2. table101v (e.g.) - view created by JOIN of table101 and
true_alerts, which has one row for each alert (140)
 For each subject/display/alert, it shows their answer,
 and whether that answer is a true positive (TP), true negative
(TN), false positive (FP), or false negative (FN)

Output is: table results_summary, which has one row for each subject/display (145
rows).
 For each one, it shows the count of alerts selected, along with TP,
TN, FP, and FN counts; the F1 score;
 and counts of TP and FN for the easy, moderate, and hard true alerts.
'''

import sys
import os
import psycopg2
import sql_connect
import process

def get_numeric(item): # Used in sorting rows
 return int(item[0])

if __name__ == '__main__':
 print "Enter create_summary_main - For each distinct subject-display, add one
row with results."
 # Set up SQL connection
 conn = sql_connect.connect()
 if conn == -1:
 print "main: connection call failed. Exiting."
 sys.exit(-1)
 cur = conn.cursor()

 # First set up loop parameters - display and subject
 cur.execute("SELECT DISTINCT ON (subject,display) subject, display,
subject_org, time_order from subject_choices ORDER BY subject")
 rowsin = cur.fetchall()
 rows = sorted(rowsin, key=get_numeric) # Do the sort on the integer value of
"subject"
 #print rows
 #print "subj,disp count = " + str(len(rows))
 for subject_display in rows:
 subject = subject_display[0]
 display = subject_display[1]
 org = subject_display[2]
 time_order = subject_display[3]
 print "s-d-o-t = " + subject + ", " + display + ", " + org + ", " +
str(time_order)

 # Process this subject-display pair

34

 #
 # First create temp view dispnnn (e.g. table101)
 c_dispnnn = "CREATE OR REPLACE TEMPORARY VIEW dispnnn AS (SELECT
subject_org,subject,time_order,alert_no,a_group,group_comment FROM subject_choices
" + \
 "WHERE subject = '" + subject + "' AND display = '" + display + "');"
 #print c_dispnnn
 cur.execute(c_dispnnn)
 cur.execute("COMMIT;")

 # Cteate dispnnnv (e.g. table101v)
 c_dispnnnv = "CREATE OR REPLACE TEMPORARY VIEW dispnnnv AS SELECT
t.alert_id, v.subject_org AS org, v.subject, v.time_order, "+\
 " COALESCE(t.true_alert,0) AS true_alert,"+\
 " COALESCE((v.alert_no/v.alert_no),0) AS selected, "+\
 " COALESCE((t.true_alert*(v.alert_no/v.alert_no)),0) AS tp, "+\
 " COALESCE(GREATEST(COALESCE((v.alert_no/v.alert_no))-
COALESCE(t.true_alert,0)),0) AS fp, "+\
 " -GREATEST(t.true_alert,COALESCE((v.alert_no/v.alert_no),0))+1 AS tn, "+\
 " COALESCE(GREATEST(COALESCE(t.true_alert,0)-
COALESCE((v.alert_no/v.alert_no),0),0)) AS fn, "+\
 " COALESCE(t.easy,0) AS easy, COALESCE((t.easy*(v.alert_no/v.alert_no)),0)
AS tp_easy, "+\
 " COALESCE(GREATEST(COALESCE(t.easy,0)-
COALESCE((v.alert_no/v.alert_no),0),0)) AS fn_easy, "+\
 " COALESCE(t.moderate,0) AS mod, "+\
 " COALESCE((t.moderate*(v.alert_no/v.alert_no)),0) AS tp_mod, "+\
 " COALESCE(GREATEST(COALESCE(t.moderate,0)-
COALESCE((v.alert_no/v.alert_no),0),0)) AS fn_mod, "+\
 " COALESCE(t.hard,0) AS hard, "+\
 " COALESCE((t.hard*(v.alert_no/v.alert_no)),0) AS tp_hard, "+\
 " COALESCE(GREATEST(COALESCE(t.hard,0)-
COALESCE((v.alert_no/v.alert_no),0),0)) AS fn_hard "+\
 " FROM true_alerts t LEFT OUTER JOIN dispnnn v ON (t.alert_id =
v.alert_no) "
 " ORDER BY alert_id;"
 #print c_dispnnnv
 cur.execute(c_dispnnnv)
 cur.execute("COMMIT;")

 c_insert = "INSERT INTO results_summary " + \
 " (org , subject , display , time_order ," + \
 " true_alerts , selected ," + \
 " tp , fp , tn , fn ," + \
 " f1_score ," + \
 " easy , tp_easy , fn_easy ," + \
 " mod , tp_mod , fn_mod ," + \
 " hard , tp_hard , fn_hard)" + \
 " VALUES ('" + org +"', " + str(subject) +", '" + display +"'," +
str(time_order) + ", " + \
 " (SELECT SUM(true_alert) from dispnnnv), (SELECT SUM(selected) from
dispnnnv)," + \
 " (SELECT SUM(tp) from dispnnnv), (SELECT SUM(fp) from dispnnnv)," + \
 " (SELECT SUM(tn) from dispnnnv), (SELECT SUM(fn) from dispnnnv)," + \
 " (SELECT ROUND(
2*(SUM(tp))::NUMERIC/(2*(SUM(tp))+SUM(fp)+SUM(fn))::NUMERIC,2) from dispnnnv)," +
\
 " (SELECT SUM(easy) from dispnnnv), (SELECT SUM(tp_easy) from dispnnnv),
(SELECT SUM(fn_easy) from dispnnnv)," + \
 " (SELECT SUM(mod) from dispnnnv), (SELECT SUM(tp_mod) from dispnnnv),
(SELECT SUM(fn_mod) from dispnnnv)," + \
 " (SELECT SUM(hard) from dispnnnv), (SELECT SUM(tp_hard) from dispnnnv),
(SELECT SUM(fn_hard) from dispnnnv));"
 #print c_insert

 try:
 cur.execute(c_insert)
 except:
 print "Insertion failed (probably duplication) - " + str(subject) + ",
" + display

35

 cur.execute("DROP VIEW dispnnnv;")
 cur.execute("DROP VIEW dispnnn;")
 # End for subject-display - All results have been inserted.
 print "End of create_summary_main"
 conn.close()
End main

End create_summary_main.py

B-5 create_summary_plus_main.py

This program adds the statistics Recall and Precision to the results table, plus Recall
for easy, moderate, and hard subcategories of true alerts. It creates a new table,
results_summary_plus.
'''
Created on Nov 12, 2014

@author: rastrom

create_summary_plus_main

Inserts all 145 data rows into an upgrade over the table results_summary.

Input: table results_summary

Output: similar table results_summary_plus, which has all columns that
results_summary has, plus the folowing:

 recall = TP / (TP + FN)
 Precision = TP / (TP + FP)
 recall_easy
 recall_mod
 recall_hard

'''

import sys
import os
import psycopg2
import sql_connect
import process

if __name__ == '__main__':
 print "Enter create_summary_plus_main - For each distinct subject-display, add
one row with results PLUS."
 # Set up SQL connection
 conn = sql_connect.connect()
 if conn == -1:
 print "main: connection call failed. Exiting."
 sys.exit(-1)
 cur = conn.cursor()

 # First copy all of table results_summary
 cur.execute("SELECT * from results_summary;")
 rows = cur.fetchall()
 for row in rows:
 rsindex = row[0]
 org = row[1]
 subject = row[2]
 display = row[3]
 time_order = row[4]
 true_alerts = row[5]
 selected = row[6]
 tp = row[7]
 fp = row[8]
 tn = row[9]

36

 fn = row[10]
 f1_score = row[11]
 easy = row[12]
 tp_easy = row[13]
 fn_easy = row[14]
 mod = row[15]
 tp_mod = row[16]
 fn_mod = row[17]
 hard = row[18]
 tp_hard = row[19]
 fn_hard = row[20]
 #print row

 # ADD columns: elapsed time, recall, precision, recall_easy, recall_mod,
recall_hard.

 # First re-parse input files for time information.

 # Prepare INSERT statement for this row
 c_insert = "INSERT INTO results_summary_plus " + \
 " (rsindex, org , subject , display , time_order , " + \
 " true_alerts , selected , tp , fp , tn , fn , " + \
 " recall , precision , f1_score , " + \
 " easy , tp_easy , fn_easy , recall_easy , " + \
 " mod , tp_mod , fn_mod , recall_mod , " + \
 " hard , tp_hard , fn_hard , recall_hard)" + \
 " VALUES (" + str(rsindex) + ", '" + org +"', " + str(subject) +", '" +
display +"'," + str(time_order) + ", " + \
 str(true_alerts) + ", " + str(selected) + ", " + str(tp) + ", " + str(fp)
+ ", "+ str(tn) + ", " + str(fn) + \
 ", ROUND((" + str(float(tp) / (float(tp) + float(fn))) + "),2) " +
", ROUND((" + str(float(tp) / (float(tp) + float(fp))) + "),2), " + \
 str(f1_score) + ", " + str(easy) + ", " + str(tp_easy) + ", " +
str(fn_easy) + \
 ", ROUND((" + str(float(tp_easy) / (float(tp_easy) + float(fn_easy)))
+ "),2), " + \
 str(mod) + ", " + str(tp_mod) + ", " + str(fn_mod) + \
 ", ROUND((" + str(float(tp_mod) / (float(tp_mod) + float(fn_mod))) +
"),2), " + \
 str(hard) + ", " + str(tp_hard) + ", " + str(fn_hard) + \
 ", ROUND((" + str(float(tp_hard) / (float(tp_hard) + float(fn_hard)))
+ "),2)) ; "
 #print c_insert
 try:
 cur.execute(c_insert)
 except:
 print "Exception - probable duplication - " + c_insert

 # End for row - done here.
 cur.execute("COMMIT;")
 print "End of create_summary_plus_main"
 conn.close()
End main

End create_summary_plus_main.py

B-6 add_comp_time_main.py

One last column is filled in, for the results table results_summary_plus, by this
program.
'''
Created on Nov 13, 2014

@author: rastrom
'''

37

import sys
import os
import psycopg2
import sql_connect
import process

if __name__ == '__main__':
 print "Enter add_comp_time_main - Read & parse survey results, add completion
time to results_summary_plus. "
 # Set up SQL connection
 conn = sql_connect.connect()
 if conn == -1:
 print "main: connection call failed. Exiting."
 sys.exit(-1)
 cur = conn.cursor()
 total = 0
 # For each results file, get ORG, SUBJECT, and DISPLAY from Dir path and file
name
 # Then read and parse each file (parse_results)
 # Then insert data into SQL (insert_results)
 filebase = "/home/rastrom/w00_cognition/FY15/Data"
 inputdata = os.listdir(filebase)
 for org in ['ARL','MSU']: # ARL analysts or Morgan State students
 dirs = os.listdir(filebase + '/' + org)
 for direct in dirs: # '101' , '112' etc. - represents 'subject' number
 if direct.find('.') == -1:
 subject = int(direct)
 path = filebase + '/' + org + '/' + direct + '/'
 files = os.listdir(path)
 for infile in files:
 count = 0
 if (infile.find('table') >= 0 and infile.find('~') == -1): #
Avoid the editing residue of form name.txt~
 display = 'table'
 struct = process.parse_results(path + infile) # See
process.py comments for dictionary 'struct' layout.
 if struct["elapsed"] == 0:
 print "Elapsed time of 0 - subject,display = " +
str(subject) + ", " + display
 #print struct
 else:
 insert = "UPDATE results_summary_plus SET
completion_time = " + str(struct['elapsed']) + \
 " WHERE subject = " + str(subject) + " AND display =
'table';"
 #print insert
 cur.execute(insert)
 cur.execute("COMMIT;")
 count = count + 1
 # End if-else
 elif (infile.find('nodelink') >= 0 and infile.find('~') == -
1):
 display = 'nodelink'
 struct = process.parse_results(path + infile) # See
process.py comments for dictionary 'struct' layout.
 if struct["elapsed"] == 0:
 print "Elapsed time of 0 - subject,display = " +
str(subject) + ", " + display
 #print struct
 else:
 insert = "UPDATE results_summary_plus SET
completion_time = " + str(struct['elapsed']) + \
 " WHERE subject = " + str(subject) + " AND display =
'nodelink';"
 #print insert
 cur.execute(insert)
 cur.execute("COMMIT;")
 count = count + 1
 # End if-else
 elif (infile.find('pc') >= 0 and infile.find('~') == -1):
 display = 'pc'

38

 struct = process.parse_results(path + infile) # See
process.py comments for dictionary 'struct' layout.
 if struct["elapsed"] > 0 and struct["alerts"] != []:
 insert = "UPDATE results_summary_plus SET
completion_time = " + str(struct['elapsed']) + \
 " WHERE subject = " + str(subject) + " AND display =
'pc';"
 #print insert
 cur.execute(insert)
 cur.execute("COMMIT;")
 count = count + 1
 # End if
 # End if-elif-elif

 total = total + count
 # End for infile
 # End if direct.find
 # End for direct
 # End for org
 conn.close()
 print "Exit add_comp_time_main - total insertions = " + str(total)
end main

End add_comp_time_main.py

B-7 Statistical Analysis – Means Comparison Routines in
functions.py

Functions.py contains 2 mean comparison tests: compare_means_t and
compare_means_f.
'''
Created on Nov 20, 2014

@author: rastrom
'''
import scipy.stats as stats
from scipy.stats import t
import numpy
'''
Subroutine to determine the t-statistic of a distribution
Inputs:
n = number of samples
std = standard deviation of the samples.
confidence = % confidence limit desired, e.g. for 95% or 99% conf level of
interval

Output: half_range = half the length of confidence interval - e.g. if half_range
= 1 then conf.int. = mean +- 1

'''
def t_conf_int(n, istd, iconfidence):
 # CAUTION: SELECT results from "float" fields are
copied as "Decimal", which
 # does not mix with float in arithmetic. Fixed in
functions, not here.
 # COUNT ("n" here) is copied as "long" integer; OK in
arithmetic.
 std = float(istd)
 confidence = float(iconfidence)
 if n < 2:
 print "Bad t_stat call: n,std,conf = " + str(n) + str(std) +
str(confidence)
 return 0.0
 # intv = interval(alpha, df, loc=0, scale=1) # Endpoints of the range that
contains alpha percent of the distribution
 intv = t.interval(confidence, n-1, loc=0, scale=1)

39

 t_val = intv[1]
 #print "t value for " + str(n) + " samples and confidence interval of " +
str(confidence) + " = " + str(t_val)
 half_range = t_val*(std / numpy.sqrt(n))
 return half_range
End t_stat
'''
compare_means_t -

Subroutine to SELECT 'field' from results_summary_plus for two different groups,
and calculate & print each group's mean, standard deviation, and 95% plus-minus,
plus, for the PAIR, DIFFERENT (T or F), t-test t-value, p-value, and t-threshold
for 95%.

'''
def compare_means_t(cur, confidence, field, where1, where2):
 #test mean difference - using f1_score, MSU & ARL
 # Read the vectors
 INSERT = True ##### Parameter, settable here.
 VERBOSE = True ##### Parameter, settable here.
 sql1 = "SELECT " + field + " FROM results_summary_plus WHERE " + where1 + ";"
 #print sql1 # Deubg only
 cur.execute(sql1)
 rows = cur.fetchall() # len = 78 values of f1 for MSU subjects
 field1 = []
 for row in rows:
 field1.append(float(row[0]))
 field1_avg = numpy.mean(field1)
 field1_stdev = numpy.std(field1)
 field1_len = len(field1)
 sql2 = "SELECT " + field + " FROM results_summary_plus WHERE " + where2 + ";"
 cur.execute(sql2)
 rows = cur.fetchall() # len = 67 values of f1 for ARL subjects
 field2 = []
 for row in rows:
 field2.append(float(row[0]))
 field2_avg = numpy.mean(field2)
 field2_stdev = numpy.std(field2)
 field2_len = len(field2)

 # Calculate 95% confidence interval for the means.
 half_range1 = t_conf_int(field1_len, field1_stdev, confidence)

 half_range2 = t_conf_int(field2_len, field2_stdev, confidence)

 # Call ttest_ind to determine whether the 2 means are statistically different.
 # Result[1] = probability = tail of the t distribution. Lower prob --> more
likely that means are different.
 # Example: if result[1] <= .05 = 5% , then the 2 means are different with 95%
confidence.
 result = stats.ttest_ind(field1, field2, equal_var=False)
 # Calculate confidence interval for hypothesis that the 2 means are different
-
 pct = round(100.0 - result[1]*100.0 , 1)
 # Calculate t stat for len+len
 n = field1_len + field2_len - 1 # Should this be -2 ?
 intv = t.interval(0.95, n-1, loc=0, scale=1)
 tcalc = intv[1]

 # Output format:
 #
 # Field 'field' - 95% confidence interval for means, 2-tailed:
 # "where1" mean = 29.81 +- 8.25 ; sigma = 20.41 ; n = 26 samples
 # "where2" mean = 17.09 +- 7.22 ; sigma = 16.7 ; n = 23 samples
 # P = 97.7% probabilility of significant difference
 # t value = 2.34; values over
 # t-dist = 2.01 indicate a significant difference with confidence of 95%

 # Insert into means_compare table
 w1 = where1.replace("'", "''") # escape ' chars in WHERE clause
 w2 = where2.replace("'", "''")

40

 if pct < confidence*100.0:
 different = "NOT DFRNT"
 else:
 different = "DIFFERENT"
 means_insert = "INSERT INTO means_compare " + \
 "(field, group1, mean1, plusminus1, sigma1, n1," \
 + " group2, mean2, plusminus2, sigma2, n2," \
 + " p_value, t_value, t_threshold, different, confidence)" \
 + " VALUES ('" + field +"', '" \
 + w1 +"', " + str(round(field1_avg,2)) + ", " + str(round(half_range1,2)) \
 + ", " + str(round(field1_stdev,2)) + ", " + str(field1_len) + ", '" \
 + w2 + "', " + str(round(field2_avg,2)) + ", " + str(round(half_range2,2)) \
 + ", " + str(round(field2_stdev,2)) + ", " + str(field2_len) + ", " \
 + str(round(100.0-result[1]*100.0,1)) + ", " + str(round(abs(result[0]),5)) +
", " + str(round(tcalc,2)) \
 + ", '" + different + "', " + str(confidence) \
 + ");"
 #print means_insert # Debug only
 if INSERT == True:
 try:
 cur.execute(means_insert)
 except:
 a = "***********"
 print a+"These 2 means in field '" + field + "' are already in the
means_compare table. "+a
 # End try
 cur.execute("COMMIT") # STRANGE lesson learned: "COMMIT" an exception
here, or the next SELECT fails.
 # End INSERT
 # Create a printed report if VERBOSE is True:
 if VERBOSE == True:
 print "Field '" + field + "' - " + str(int(confidence*100)) \
 + "% confidence interval for means, 2-tailed:"
 print "\"" + where1 + "\" - mean = " + str(round(field1_avg,2)) + " +- "
+ str(round(half_range1,2)) \
 + " ; sigma = " + str(round(field1_stdev,2)) + " ; n = " + str(field1_len)
+ " samples"
 print "\"" + where2 + "\" - mean = " + str(round(field2_avg,2)) + " +- "
+ str(round(half_range2,2)) \
 + " ; sigma = " + str(round(field2_stdev,2)) + " ; n = " + str(field2_len)
+ " samples"
 if pct < confidence*100.0:
 print "Means are NOT different with confidence of " +
str(int(confidence*100)) + "%"
 else:
 print "Means ARE different with confidence of " +
str(int(confidence*100)) + "%"
 print "P = " + str(pct) + "% probability of significant
difference between means\n" \
 + "t value = " + str(round(abs(result[0]),5)) + " ; values over\n" \
 + "t-dist = "+ str(round(tcalc,2)) + " indicate a significant
difference with confidence of 95%\n"
 # End VERBOSE
 #md = field2_avg - field1_avg
 #se = numpy.sqrt(field2_stdev**2/(field2_len-1) + field1_stdev**2/(field1_len-
1))
 #tval = md/se
 #print "Directly calculated t stat = " + str(round(abs(tval),5))
 return
End compare_means_t
'''
compare_means_F

Method to compare two or more means.

Determines whether ANY mean or means is significantly different from the others.
(Passing this F test ["Different"] does NOT tell you which one(s) is/are
different.)

Uses F test. ASSUMPTION : all variances are the same.

41

Inputs: confidence, [X1,X2,...] (at least 2) , where
confidence is the desired confidence limit (e.g. .95 for 95% confidence)
[X1,X2,...] (in a list/2d array) are the vectors of values in set 1, 2,
etc.

Outputs: [F , p-value , f-dist] , where
F is the F statistic for the N sets of data
p-value is the p-value on the F distribution CDF
f-dist is the crossover value on the CDF for p-value where the means are
DIFFERENT within conf% confidence.

YES / NO - The calling routine must calculate the Yes or No answer to the
question:
"Are any of the means different from the others, to a (conf)% confidence
level ??

DIFFERENT iff p-value > f-dist
'''
def compare_means_f(confidence, inputlist):
 x = inputlist
 print "Enter compare_means_f, conf = " + str(confidence)
 k = 0 # K parameter - number of data sets.
 n = 0 # N parameter - total number of samples
 ni = [] # List of N (number of samples) for each input vector
 for vec in x:
 print len(vec)
 k = k + 1
 n = n + len(vec)
 ni.append(len(vec))
 # End for vec
 print "There are " + str(k) + " datasets, with " + str(n) + " total samples."
 if k < 2:
 print "There are not at least 2 vectors of data! compare_means_f returns
0. ############"
 return [0,0,0]
 if k == 2:
 ft = stats.f_oneway(x[0],x[1])
 elif k == 3:
 ft = stats.f_oneway(x[0],x[1],x[2])
 elif k == 4:
 ft = stats.f_oneway(x[0],x[1],x[2],x[3])
 elif k == 5:
 ft = stats.f_oneway(x[0],x[1],x[2],x[3],x[4])
 elif k == 6:
 ft = stats.f_oneway(x[0],x[1],x[2],x[3],x[4],x[5])
 else:
 print "There are more than 6 vectors of data! Change the code if this is
legitimate. ###############"
 return [0,0,0]
 # End if-elif-else
 F = ft[0]
 pval = ft[1]
 print "f_oneway - F, p :"
 print ft # answer: F stat = 9.27; p-value = .00239.

 fdist = stats.distributions.f.ppf(.95,2,15)
 print "cdf :"
 print fdist

 return [F, pval, fdist]
End compare_means_f

End functions

End functions.py

42

B-8 mean_tests.py

Mean_tests.py, as a first exercise of using the t-test, calls the function
compare_means_t to compare the means of 10 scores from results_summary_plus,
for 3 display types each. The 30 tests are all comparisons of US Army Research
Laboratory (ARL) versus Morgan State University (MSU) test subjects.
'''
Created on Dec 3, 2014

@author: rastrom
'''
import sys
import sql_connect
import functions
import numpy
import scipy.stats as s
from scipy.stats import t

Compares the two means of "field" between MSU & ARL subjects, all display types
def org_display_compare(cur, field, confidence):
 where1 = "org='MSU' and display='table'"
 where2 = "org='ARL' and display='table'"
 functions.compare_means_t(cur, confidence, field, where1, where2)
 where1 = "org='MSU' and display='pc'"
 where2 = "org='ARL' and display='pc'"
 functions.compare_means_t(cur, confidence, field, where1, where2)
 where1 = "org='MSU' and display='nodelink'"
 where2 = "org='ARL' and display='nodelink'"
 functions.compare_means_t(cur, confidence, field, where1, where2)

End org_display_compare

Test T statistic

Test PAIRS of mean values, using the t test, and present True or False - are
they different?
(within 95% confidence interval) - OR 99%; parameter.
if __name__ == '__main__':
 print "Enter mean_tests\n"
 conn = sql_connect.connect()
 if conn == -1:
 print "main: connection call failed. Exiting."
 sys.exit(-1)
 cur = conn.cursor()
 confidence = .95
 field = "tp"
 org_display_compare(cur, field, confidence)
 field = "fp"
 org_display_compare(cur, field, confidence)
 field = "tn"
 org_display_compare(cur, field, confidence)
 field = "fn"
 org_display_compare(cur, field, confidence)
 field = "recall"
 org_display_compare(cur, field, confidence)
 field = "precision"
 org_display_compare(cur, field, confidence)
 field = "f1_score"
 org_display_compare(cur, field, confidence)
 field = "recall_easy"
 org_display_compare(cur, field, confidence)
 field = "recall_mod"
 org_display_compare(cur, field, confidence)
 field = "recall_hard"
 org_display_compare(cur, field, confidence)
 print "\nEnd mean_tests"

43

 conn.close()
End main

B-9 order_plots.py

This program uses SQL queries to get all F1 scores, along with their means and
standard deviations. It then calls the T test, means_test_t, listed in functions.py, to
determine each mean’s 95% confidence interval. Then the scatter plot is created,
with the means and intervals superimposed.
'''
Created on Dec 16, 2014

@author: rastrom
'''

import sys
import sql_connect
import functions
import numpy
import matplotlib.pyplot as plt

if __name__ == '__main__':
 print "Enter order_plots"
 conn = sql_connect.connect()
 if conn == -1:
 print "main: connection call failed. Exiting."
 sys.exit(-1)
 cur = conn.cursor()
 #test mean difference - using f1, MSU & ARL
 fname = "/home/rastrom/w00_cognition/analysis_data/testplot.png"
 sql1 = "SELECT f1_score, time_order FROM results_summary_plus WHERE org =
'ARL';" # Plus org='MSU'
 cur.execute(sql1)
 rows = cur.fetchall() # 78 values of f1, order (= 1,2,3) for MSU subjects
 order = [] # points for scatter plot - order numbers
 f1 = [] # points for scatter plot - f1 values
 f1_1 = [] # f1 values where order = 1
 f1_2 = [] # f1 values where order = 2
 f1_3 = [] # f1 values where order = 3
 for row in rows:
 n = float(row[1])
 f = float(row[0])
 order.append(n)
 f1.append(f)
 if n == 1:
 f1_1.append(f)
 elif n == 2:
 f1_2.append(f)
 elif n == 3:
 f1_3.append(f)
 else:
 print "row did not contain order no - row = "
 print row
 # End for row - Now create scatter plot
 avg_1 = numpy.mean(f1_1) # Averages, standard deviations for trial [1,2,3]
 avg_2 = numpy.mean(f1_2)
 avg_3 = numpy.mean(f1_3)
 std_1 = numpy.std(f1_1)
 std_2 = numpy.std(f1_2)
 std_3 = numpy.std(f1_3)
 n1 = len(f1_1)
 n2 = len(f1_2)
 n3 = len(f1_3)
 avgs = [avg_1,avg_2,avg_3] # For superimposed Averages plot
 t1 = functions.t_conf_int(n1, std_1, 0.95)

44

 t2 = functions.t_conf_int(n2, std_2, 0.95)
 t3 = functions.t_conf_int(n3, std_3, 0.95)
 orders = [1,2,3] # For superimposed Averages plot

 # Begin plot creation
 fig = plt.figure()
 fig, ax = plt.subplots()
 # Plot 3 averages and error ranges (95%)
 ax.scatter(1.05, avg_1, s = 150, marker='.', facecolor='red') # + .05 for
easier reading on plot
 plt.errorbar(1.05, avg_1, yerr=t1, color='red')
 ax.scatter(2.05, avg_2, s = 150, marker='.', facecolor='red')
 plt.errorbar(2.05, avg_2, yerr=t2, color='red')
 ax.scatter(3.05, avg_3, s = 150, marker='.', facecolor='red')
 plt.errorbar(3.05, avg_3, yerr=t3, color='red')
 # plot line graphing 3 averages
 ax.plot(orders,avgs, color='red')
 # Scatter plot - all values versus [1,2,3]
 plt.scatter(order,f1, s = 20, marker='x', facecolor='black')
 # Labels and Axes
 plt.title("ARL - F1 Score for 1st, 2nd, 3rd Trial") # Plus "ARL ..."
 plt.xlabel("Order of trial")
 plt.xticks([1,2,3],["1st", "2nd", "3rd"])
 plt.ylabel("F1 Score")
 axes = plt.gca()
 axes.set_xlim([0,4])
 axes.set_ylim([0.0,1.0])
 # Save the plot
 plt.savefig(fname)
 # Done with plot creation

 conn.close()
 print "End test analysis"
End main

End order_plots.py

45

Appendix C. Results Summary Listing

46

This Appendix provides a summary listing of the results:

research=> CREATE OR REPLACE VIEW seven_scores AS SELECT
org,subject,display,ROUND(CAST(completion_time AS NUMERIC),1) AS
completion_time,tp,fp,tn,fn,recall,precision,f1_score FROM results_summary_
plus ORDER BY subject,display;

research=> SELECT * FROM seven_scores;
 org | subject | display | completion_time | tp | fp | tn | fn | recall |
precision | f1_score
-----+---------+----------+-----------------+----+----+----+----+--------+--------
---+----------
 MSU | 1 | nodelink | 4.9 | 24 | 68 | 30 | 18 | 0.57 |
0.26 | 0.36
 MSU | 1 | pc | 1.9 | 42 | 48 | 50 | 0 | 1.00 |
0.47 | 0.64
 MSU | 1 | table | 20.1 | 13 | 17 | 81 | 29 | 0.31 |
0.43 | 0.36
 MSU | 8 | nodelink | 4.8 | 25 | 38 | 60 | 17 | 0.60 |
0.40 | 0.48
 MSU | 8 | pc | 4.1 | 30 | 46 | 52 | 12 | 0.71 |
0.39 | 0.51
 MSU | 8 | table | 18.0 | 26 | 33 | 65 | 16 | 0.62 |
0.44 | 0.51
 MSU | 9 | nodelink | 5.4 | 12 | 49 | 49 | 30 | 0.29 |
0.20 | 0.23
 MSU | 9 | pc | 7.8 | 32 | 74 | 24 | 10 | 0.76 |
0.30 | 0.43
 MSU | 9 | table | 17.4 | 19 | 40 | 58 | 23 | 0.45 |
0.32 | 0.38
 MSU | 10 | nodelink | 10.0 | 38 | 4 | 94 | 4 | 0.90 |
0.90 | 0.90
 MSU | 10 | pc | 11.9 | 1 | 29 | 69 | 41 | 0.02 |
0.03 | 0.03
 MSU | 10 | table | 10.8 | 23 | 17 | 81 | 19 | 0.55 |
0.58 | 0.56
 MSU | 13 | nodelink | 4.5 | 20 | 15 | 83 | 22 | 0.48 |
0.57 | 0.52
 MSU | 13 | pc | 13.1 | 6 | 30 | 68 | 36 | 0.14 |
0.17 | 0.15
 MSU | 13 | table | 9.1 | 16 | 24 | 74 | 26 | 0.38 |
0.40 | 0.39
 MSU | 14 | nodelink | 19.6 | 29 | 33 | 65 | 13 | 0.69 |
0.47 | 0.56
 MSU | 14 | pc | 5.8 | 26 | 59 | 39 | 16 | 0.62 |
0.31 | 0.41
 MSU | 14 | table | 14.7 | 27 | 22 | 76 | 15 | 0.64 |
0.55 | 0.59
 MSU | 15 | nodelink | 2.2 | 29 | 67 | 31 | 13 | 0.69 |
0.30 | 0.42
 MSU | 15 | pc | 2.4 | 11 | 60 | 38 | 31 | 0.26 |
0.15 | 0.19
 MSU | 15 | table | 14.5 | 26 | 44 | 54 | 16 | 0.62 |
0.37 | 0.46
 MSU | 16 | nodelink | 5.8 | 20 | 22 | 76 | 22 | 0.48 |
0.48 | 0.48
 MSU | 16 | pc | 9.8 | 42 | 97 | 1 | 0 | 1.00 |
0.30 | 0.46
 MSU | 16 | table | 11.9 | 18 | 22 | 76 | 24 | 0.43 |
0.45 | 0.44
 MSU | 17 | nodelink | 11.7 | 25 | 28 | 70 | 17 | 0.60 |
0.47 | 0.53
 MSU | 17 | pc | 4.0 | 18 | 7 | 91 | 24 | 0.43 |
0.72 | 0.54
 MSU | 17 | table | 10.8 | 31 | 45 | 53 | 11 | 0.74 |
0.41 | 0.53

47

 MSU | 20 | nodelink | 8.1 | 22 | 26 | 72 | 20 | 0.52 |
0.46 | 0.49
 MSU | 20 | pc | 14.9 | 15 | 6 | 92 | 27 | 0.36 |
0.71 | 0.48
 MSU | 20 | table | 8.0 | 18 | 21 | 77 | 24 | 0.43 |
0.46 | 0.44
 MSU | 21 | nodelink | 2.9 | 26 | 47 | 51 | 16 | 0.62 |
0.36 | 0.45
 MSU | 21 | pc | 2.3 | 27 | 70 | 28 | 15 | 0.64 |
0.28 | 0.39
 MSU | 21 | table | 13.5 | 27 | 17 | 81 | 15 | 0.64 |
0.61 | 0.63
 MSU | 22 | nodelink | 14.6 | 38 | 9 | 89 | 4 | 0.90 |
0.81 | 0.85
 MSU | 22 | pc | 17.4 | 27 | 42 | 56 | 15 | 0.64 |
0.39 | 0.49
 MSU | 22 | table | 6.0 | 21 | 16 | 82 | 21 | 0.50 |
0.57 | 0.53
 MSU | 23 | nodelink | 8.7 | 32 | 19 | 79 | 10 | 0.76 |
0.63 | 0.69
 MSU | 23 | pc | 5.7 | 4 | 0 | 98 | 38 | 0.10 |
1.00 | 0.17
 MSU | 23 | table | 5.8 | 27 | 11 | 87 | 15 | 0.64 |
0.71 | 0.68
 MSU | 24 | nodelink | 7.9 | 26 | 44 | 54 | 16 | 0.62 |
0.37 | 0.46
 MSU | 24 | pc | 3.5 | 29 | 47 | 51 | 13 | 0.69 |
0.38 | 0.49
 MSU | 24 | table | 12.8 | 16 | 58 | 40 | 26 | 0.38 |
0.22 | 0.28
 MSU | 28 | nodelink | 3.6 | 21 | 57 | 41 | 21 | 0.50 |
0.27 | 0.35
 MSU | 28 | pc | 5.3 | 36 | 48 | 50 | 6 | 0.86 |
0.43 | 0.57
 MSU | 28 | table | 19.1 | 23 | 52 | 46 | 19 | 0.55 |
0.31 | 0.39
 MSU | 29 | nodelink | 3.1 | 11 | 5 | 93 | 31 | 0.26 |
0.69 | 0.38
 MSU | 29 | pc | 9.6 | 5 | 2 | 96 | 37 | 0.12 |
0.71 | 0.20
 MSU | 29 | table | 11.7 | 40 | 94 | 4 | 2 | 0.95 |
0.30 | 0.45
 MSU | 30 | nodelink | 4.4 | 25 | 26 | 72 | 17 | 0.60 |
0.49 | 0.54
 MSU | 30 | pc | 12.0 | 19 | 33 | 65 | 23 | 0.45 |
0.37 | 0.40
 MSU | 30 | table | 11.7 | 18 | 45 | 53 | 24 | 0.43 |
0.29 | 0.34
 MSU | 31 | nodelink | 0.8 | 0 | 24 | 74 | 42 | 0.00 |
0.00 | 0.00
 MSU | 31 | pc | 6.0 | 28 | 12 | 86 | 14 | 0.67 |
0.70 | 0.68
 MSU | 31 | table | 6.2 | 15 | 15 | 83 | 27 | 0.36 |
0.50 | 0.42
 MSU | 33 | nodelink | 14.2 | 13 | 0 | 98 | 29 | 0.31 |
1.00 | 0.47
 MSU | 33 | pc | 16.2 | 7 | 10 | 88 | 35 | 0.17 |
0.41 | 0.24
 MSU | 33 | table | 9.6 | 5 | 0 | 98 | 37 | 0.12 |
1.00 | 0.21
 MSU | 34 | nodelink | 3.2 | 8 | 0 | 98 | 34 | 0.19 |
1.00 | 0.32
 MSU | 34 | pc | 12.6 | 29 | 16 | 82 | 13 | 0.69 |
0.64 | 0.67
 MSU | 34 | table | 16.0 | 25 | 9 | 89 | 17 | 0.60 |
0.74 | 0.66
 MSU | 35 | nodelink | 8.7 | 19 | 21 | 77 | 23 | 0.45 |
0.48 | 0.46
 MSU | 35 | pc | 19.4 | 17 | 21 | 77 | 25 | 0.40 |
0.45 | 0.43

48

 MSU | 35 | table | 13.6 | 32 | 8 | 90 | 10 | 0.76 |
0.80 | 0.78
 MSU | 36 | nodelink | 4.8 | 8 | 26 | 72 | 34 | 0.19 |
0.24 | 0.21
 MSU | 36 | pc | 4.8 | 36 | 0 | 98 | 6 | 0.86 |
1.00 | 0.92
 MSU | 36 | table | 8.8 | 28 | 27 | 71 | 14 | 0.67 |
0.51 | 0.58
 MSU | 37 | nodelink | 17.1 | 38 | 25 | 73 | 4 | 0.90 |
0.60 | 0.72
 MSU | 37 | table | 19.3 | 39 | 27 | 71 | 3 | 0.93 |
0.59 | 0.72
 MSU | 40 | nodelink | 9.9 | 36 | 19 | 79 | 6 | 0.86 |
0.65 | 0.74
 MSU | 40 | pc | 16.6 | 36 | 35 | 63 | 6 | 0.86 |
0.51 | 0.64
 MSU | 40 | table | 7.4 | 28 | 9 | 89 | 14 | 0.67 |
0.76 | 0.71
 MSU | 41 | pc | 10.1 | 28 | 46 | 52 | 14 | 0.67 |
0.38 | 0.48
 MSU | 41 | table | 17.4 | 28 | 54 | 44 | 14 | 0.67 |
0.34 | 0.45
 MSU | 42 | nodelink | 12.0 | 26 | 43 | 55 | 16 | 0.62 |
0.38 | 0.47
 MSU | 42 | pc | 11.8 | 29 | 6 | 92 | 13 | 0.69 |
0.83 | 0.75
 MSU | 74 | nodelink | 5.9 | 29 | 44 | 54 | 13 | 0.69 |
0.40 | 0.50
 MSU | 74 | pc | 4.5 | 27 | 46 | 52 | 15 | 0.64 |
0.37 | 0.47
 MSU | 74 | table | 12.4 | 22 | 48 | 50 | 20 | 0.52 |
0.31 | 0.39
 ARL | 101 | nodelink | 5.8 | 15 | 25 | 73 | 27 | 0.36 |
0.38 | 0.37
 ARL | 101 | pc | 9.4 | 5 | 20 | 78 | 37 | 0.12 |
0.20 | 0.15
 ARL | 101 | table | 14.1 | 26 | 3 | 95 | 16 | 0.62 |
0.90 | 0.73
 ARL | 112 | nodelink | 13.8 | 33 | 12 | 86 | 9 | 0.79 |
0.73 | 0.76
 ARL | 112 | pc | 19.2 | 23 | 0 | 98 | 19 | 0.55 |
1.00 | 0.71
 ARL | 112 | table | 8.1 | 26 | 13 | 85 | 16 | 0.62 |
0.67 | 0.64
 ARL | 128 | nodelink | 11.8 | 23 | 12 | 86 | 19 | 0.55 |
0.66 | 0.60
 ARL | 128 | pc | 9.2 | 21 | 30 | 68 | 21 | 0.50 |
0.41 | 0.45
 ARL | 146 | nodelink | 10.6 | 12 | 9 | 89 | 30 | 0.29 |
0.57 | 0.38
 ARL | 146 | table | 17.3 | 33 | 2 | 96 | 9 | 0.79 |
0.94 | 0.86
 ARL | 175 | nodelink | 8.4 | 41 | 12 | 86 | 1 | 0.98 |
0.77 | 0.86
 ARL | 175 | pc | 5.8 | 30 | 19 | 79 | 12 | 0.71 |
0.61 | 0.66
 ARL | 175 | table | 20.3 | 32 | 22 | 76 | 10 | 0.76 |
0.59 | 0.67
 ARL | 261 | nodelink | 5.5 | 3 | 0 | 98 | 39 | 0.07 |
1.00 | 0.13
 ARL | 261 | pc | 6.7 | 2 | 27 | 71 | 40 | 0.05 |
0.07 | 0.06
 ARL | 261 | table | 15.5 | 14 | 44 | 54 | 28 | 0.33 |
0.24 | 0.28
 ARL | 274 | nodelink | 20.0 | 25 | 0 | 98 | 17 | 0.60 |
1.00 | 0.75
 ARL | 274 | pc | 20.0 | 14 | 0 | 98 | 28 | 0.33 |
1.00 | 0.50
 ARL | 274 | table | 20.0 | 33 | 3 | 95 | 9 | 0.79 |
0.92 | 0.85

49

 ARL | 298 | nodelink | 10.9 | 20 | 4 | 94 | 22 | 0.48 |
0.83 | 0.61
 ARL | 298 | pc | 12.2 | 23 | 20 | 78 | 19 | 0.55 |
0.53 | 0.54
 ARL | 298 | table | 20.0 | 15 | 3 | 95 | 27 | 0.36 |
0.83 | 0.50
 ARL | 333 | nodelink | 15.8 | 30 | 4 | 94 | 12 | 0.71 |
0.88 | 0.79
 ARL | 333 | pc | 1.6 | 32 | 55 | 43 | 10 | 0.76 |
0.37 | 0.50
 ARL | 333 | table | 14.7 | 18 | 30 | 68 | 24 | 0.43 |
0.38 | 0.40
 ARL | 340 | nodelink | 12.7 | 40 | 0 | 98 | 2 | 0.95 |
1.00 | 0.98
 ARL | 340 | pc | 20.0 | 39 | 0 | 98 | 3 | 0.93 |
1.00 | 0.96
 ARL | 340 | table | 17.7 | 37 | 0 | 98 | 5 | 0.88 |
1.00 | 0.94
 ARL | 411 | nodelink | 18.3 | 42 | 28 | 70 | 0 | 1.00 |
0.60 | 0.75
 ARL | 411 | pc | 20.0 | 13 | 14 | 84 | 29 | 0.31 |
0.48 | 0.38
 ARL | 411 | table | 20.0 | 27 | 5 | 93 | 15 | 0.64 |
0.84 | 0.73
 ARL | 481 | nodelink | 11.5 | 42 | 2 | 96 | 0 | 1.00 |
0.95 | 0.98
 ARL | 481 | pc | 20.0 | 24 | 5 | 93 | 18 | 0.57 |
0.83 | 0.68
 ARL | 481 | table | 18.0 | 42 | 26 | 72 | 0 | 1.00 |
0.62 | 0.76
 ARL | 493 | nodelink | 20.0 | 28 | 2 | 96 | 14 | 0.67 |
0.93 | 0.78
 ARL | 493 | pc | 16.2 | 39 | 2 | 96 | 3 | 0.93 |
0.95 | 0.94
 ARL | 493 | table | 16.5 | 38 | 3 | 95 | 4 | 0.90 |
0.93 | 0.92
 ARL | 515 | nodelink | 19.9 | 20 | 33 | 65 | 22 | 0.48 |
0.38 | 0.42
 ARL | 515 | pc | 19.9 | 16 | 59 | 39 | 26 | 0.38 |
0.21 | 0.27
 ARL | 515 | table | 20.0 | 14 | 9 | 89 | 28 | 0.33 |
0.61 | 0.43
 ARL | 597 | nodelink | 7.2 | 42 | 34 | 64 | 0 | 1.00 |
0.55 | 0.71
 ARL | 597 | pc | 3.5 | 22 | 97 | 1 | 20 | 0.52 |
0.18 | 0.27
 ARL | 597 | table | 11.5 | 33 | 28 | 70 | 9 | 0.79 |
0.54 | 0.64
 ARL | 674 | nodelink | 5.6 | 27 | 36 | 62 | 15 | 0.64 |
0.43 | 0.51
 ARL | 674 | pc | 1.5 | 32 | 55 | 43 | 10 | 0.76 |
0.37 | 0.50
 ARL | 674 | table | 13.4 | 21 | 25 | 73 | 21 | 0.50 |
0.46 | 0.48
 ARL | 678 | nodelink | 20.0 | 32 | 55 | 43 | 10 | 0.76 |
0.37 | 0.50
 ARL | 678 | pc | 12.7 | 23 | 34 | 64 | 19 | 0.55 |
0.40 | 0.46
 ARL | 678 | table | 20.0 | 23 | 52 | 46 | 19 | 0.55 |
0.31 | 0.39
 ARL | 734 | table | 12.6 | 17 | 3 | 95 | 25 | 0.40 |
0.85 | 0.55
 ARL | 747 | nodelink | 6.9 | 23 | 32 | 66 | 19 | 0.55 |
0.42 | 0.47
 ARL | 747 | pc | 15.1 | 16 | 24 | 74 | 26 | 0.38 |
0.40 | 0.39
 ARL | 747 | table | 6.4 | 22 | 23 | 75 | 20 | 0.52 |
0.49 | 0.51
 ARL | 817 | nodelink | 12.3 | 33 | 7 | 91 | 9 | 0.79 |
0.83 | 0.80

50

 ARL | 817 | pc | 10.8 | 1 | 57 | 41 | 41 | 0.02 |
0.02 | 0.02
 ARL | 817 | table | 16.1 | 22 | 31 | 67 | 20 | 0.52 |
0.42 | 0.46
 ARL | 840 | nodelink | 8.5 | 10 | 0 | 98 | 32 | 0.24 |
1.00 | 0.38
 ARL | 840 | pc | 14.7 | 9 | 0 | 98 | 33 | 0.21 |
1.00 | 0.35
 ARL | 840 | table | 11.9 | 11 | 0 | 98 | 31 | 0.26 |
1.00 | 0.42
 ARL | 874 | nodelink | 14.5 | 3 | 1 | 97 | 39 | 0.07 |
0.75 | 0.13
 ARL | 874 | table | 20.0 | 21 | 5 | 93 | 21 | 0.50 |
0.81 | 0.62
 ARL | 913 | nodelink | 14.5 | 25 | 7 | 91 | 17 | 0.60 |
0.78 | 0.68
 ARL | 913 | pc | 7.8 | 14 | 55 | 43 | 28 | 0.33 |
0.20 | 0.25
 ARL | 913 | table | 20.0 | 22 | 7 | 91 | 20 | 0.52 |
0.76 | 0.62
 ARL | 921 | nodelink | 4.2 | 26 | 47 | 51 | 16 | 0.62 |
0.36 | 0.45
 ARL | 921 | pc | 3.4 | 28 | 66 | 32 | 14 | 0.67 |
0.30 | 0.41
 ARL | 921 | table | 3.7 | 23 | 56 | 42 | 19 | 0.55 |
0.29 | 0.38
(145 rows)

51

List of Symbols, Abbreviations, and Acronym

ARL US Army Research Laboratory

FN false negative

FP false positive

FY fiscal year

ID identification

IDS intrusion detection system

IPS intrusion prevention system

MSU Morgan State University

NSD Network Science Division

OS operating system

PC parallel coordinate

SQL structured query language

TN true negative

TP true positive

52

 1 DEFENSE TECH INFO CTR
 (PDF) ATTN DTIC OCA

 2 US ARMY RSRCH LAB
 (PDF) ATTN IMAL HRA MAIL & RECORDS MGMT
 ATTN RDRL CIO LL TECHL LIB

 1 GOVT PRNTG OFC
 (PDF) ATTN A MALHOTRA

 5 US ARMY RSRCH LAB
 (PDF) ATTN RDRL CIN D
 R ASTROM
 R ERBACHER
 W GLODEK
 P RITCHEY
 S HUTCHINSON

	List of Figures
	List of Tables
	1. Introduction
	2. Methods
	2.1 Test Subjects
	2.2 Alerts Presented
	2.3 Three Display Types
	2.4 Inputs from Test Subjects

	3. Subject Trial Results
	3.1 Selection Text Files
	3.2 Creation of Table subject_choices

	4. Summaries of Trial Data
	4.1 True Answers
	4.2 SQL Join Between Subject Choices and True Answers
	4.3 Statistics for Each Trial
	4.4 Results Summary Table

	5. Correlations and Plots
	5.1 Mean t Tests
	5.2 Mean F Tests
	5.3 Scatter Plot Example

	6. Future Analysis
	7. References and Notes
	Bibliography
	Appendix A. SQL Table Generation
	A-1 Creation of Table subject_choices
	A-1.1 Input Text Files
	A-1.2 Python Parsing Program process_main.py
	A.1.3 Python Program to Determine Order
	A-1.4 Format of Table subject_choices

	A-2 Creation of Table results_summary_plus
	A-2.1 Need for a Results Summary
	A-2.2 Correct Answers: true_alerts Table and true_threats View
	A-2.3 Intermediate Table results_summary using JOIN
	A-2.4 Creation of Table results_summary_plus

	A-3 Correlations and Plots
	A-3.1 Compare Two Means Using Student’s t Test
	A-3.2 Compare Multiple Means using F Test

	Appendix B. Python Programs
	B-1 process_main.py
	B-2 process.py
	B-3 set_order_main.py
	B-4 create_summary_main.py
	B-5 create_summary_plus_main.py
	B-6 add_comp_time_main.py
	B-7 Statistical Analysis – Means Comparison Routines in functions.py
	B-8 mean_tests.py
	B-9 order_plots.py

	Appendix C. Results Summary Listing
	List of Symbols, Abbreviations, and Acronym

